
Tutorial on data assimilation

Marc Bocquet
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Data assimilation: principles Definition

Data assimilation: definition

IData assimilation is the set of techniques that allow to optimally combine
observations of a physical system with numerical models and prior information of that
system, so as to get an estimate of the state of the system.

I In the geosciences: Numerical models are often computationally costly. They are
often dynamical.

I In the geosciences: The state space and observations space are huge (up to 109/107

for operational systems, up to 107/105 for research systems). A big data problem with
costly dynamical models.

IWhat for?: estimate initial state of chaotic systems for forecasting, re-analysis,
estimate parameters (∼ inverse modelling).

IExample: Data assimilation for prediction.

Observation

Model (forecast)

H

Analysis

Observation

Model (forecast)

H

Analysis

Observation

Model (forecast)

H

Analysis
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Data assimilation: principles Definition

Data assimilation system

IData assimilation system = observation and evolution models + statistics of the
errors. Typically:

xk = Mk:k−1(xk−1) + ηk

yk = Hk(xk) + εk

with ηk ∼N (0,Qk) and εk ∼N (0,Rk).

t1 t2 tK tK+1 tK+2

Past Future

IDenoting xK :1 = x1,x2, . . . ,xK , yK :1 = y1,y2, . . . ,yK :

Prediction: Estimate xk for k > K , knowing yK :1;

Filtering: Estimate xK , knowing yK :1;

Smoothing: Estimate xK :1, knowing yK :1.
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Data assimilation: principles Mathematical framework

The ideal mathematical framework

IBayes/Laplace approach:

p(x|y) =
p(y|x)p(x)

p(y)

with p(y|x) the likelihood of the observations, p(x) the prior/background on the
system’s state, and p(y) the evidence. The evidence is a normalisation that does not
depend on x:

p(y) =
∫

dxp(y|x)p(x) .

IThis is a probabilistic approach. It quantifies the uncertainty/the information. It does
not provide a deterministic estimator. This would require to make a choice on top of
Bayes’ rule.

IThe Bayesian approach is very satisfactorily [Jaynes et al., 2003]. Most DA methods can
be derived or comply with Bayes’ rule.

IBut it does not lend to a closed form analytically tractable solution.
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Data assimilation: principles Mathematical framework

Gaussian approximation

IA key to obtain a (approximate) solution is to truncate the errors to second-order
moments ∼ the Gaussian approximation. Most of DA methods are fully or partially
based on this assumption.

IThe elementary building block of DA schemes is the statistical BLUE (for Best Linear
Unbiased Estimator) analysis. Time is considered fixed. H is assumed linear.

y = Hx+ ε
o x = xb + ε

b

where εo ∼N (0,R), and εb ∼N (0,B).

ISolution:

xa = xb +K
(
y−Hxb

)
K = BHT

(
R+HBHT

)−1

Pa = (I−KH)B.

yxb xa
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Main techniques
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Main techniques 3D-Var and optimal interpolation

3D-Var and optimal interpolation

IVariational formulation of the same problem

J(x) =
1

2
‖x−xb‖2

B−1 +
1

2
‖y−Hx‖2

R−1

where ‖x‖2
A = xTAx, which is equivalent to

BLUE.

IProbabilistic/Bayesian interpretation:

p(x|y) ∝ e−J(x) yxb xa

ICapable of handling nonlinear observation operator using standard nonlinear
optimisation methods:

J(x) =
1

2
‖x−xb‖2

B−1 +
1

2
‖y−H(x)‖2

R−1 .
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Main techniques 3D-Var and optimal interpolation

Chaining the analyses in time

IChaining the BLUE/3D-Var cycles:

1 Analysis with a forecast at tk : xf
k and with static information B: xa

k ;

2 Forecast to tk+1: xf
k+1 = Mk+1:k(xa

k).

IAlso known as optimal interpolation
(if the analysis step is BLUE).

IRelatively cheap. Used in oceanogra-
phy, atmospheric chemistry. Requires
a smart construction of B.

IBut the information about the errors
is not propagated in time . . .
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Main techniques The Kalman filter

The Kalman filter

ISimilar to optimal interpolation. But, now, we want to replace the static B with a
dynamic Pf which needs updating and propagating.

IAnalysis step:

xa
k = xf

k +Kk

(
yk −Hkx

f
k

)
,

Kk = Pf
kH

T
k

(
Rk +HkP

fHT
k

)−1
,

Pa
k = (I−KkHk)Pf

k .

IForecast step:

xf
k+1 = Mk+1:kx

a
k ,

Pf
k+1 = Mk+1:kP

a
kM

T
k+1:k +Qk+1.

Observation y,R

xf

Pf

Analysis xa
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Model
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Analysis xa
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Main techniques The Kalman filter

The extended Kalman filter

IOptimal if the models are linear and if all the initial and observations errors are
Gaussian: it gives the perfect Gaussian solution of Bayes’ rule.

ICan be extended to nonlinear models: then

xf
k+1 = Mk+1:k(xa

k),

Pf
k+1 = M′k+1:kP

f
kM
′T
k+1:k +Qk+1,

where M′k+1:k is the tangent linear model.

IExtremely costly for large geophysical models: storage space (storage of Pf) and

computations (M′k+1:kP
f
kM
′T
k+1:k requires 2n integrations of the model).
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Main techniques The ensemble Kalman filter

The ensemble Kalman filter

IThe idea [Evensen, 1994; Houtekamer and Mitchell, 1998] is to make the KF work in high
dimensions and replace P (Pa or Pf) with an ensemble of states x1, x2, . . . , xm. The
moments of the error could theoretically be approximated by the sample/empirical
moments:

xf =
1

m

m

∑
i=1

x, Pf =
1

m−1

m

∑
i=1

(
x(i)−x

)(
x(i)−x

)T
.

IAnalysis step: Similar to the KF but Pf explicitly or implicitly taken as the sample
covariance estimator.

IForecast step: The ensemble is propagated using the full nonlinear model (not the
tangent linear model!)

x
(i),f
k+1 = Mk+1:k

(
x

(i),a
k

)
.
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Main techniques The ensemble Kalman filter

The ensemble Kalman filter

ITwo main flavors of EnKFs: stochastic and deterministic, but many variants.
IThe stochastic EnKF is the closest to traditional KF, but adds stochastic
perturbations to the observations of each members to properly account for the
observation errors [Burgers et al., 1998]:

xa
(i) = xf

(i) +K
(
y+ ε(i)−Hxf

(i)

)
.

IThe deterministic EnKF avoids the introduction of the stochastic perturbations by
updating the square root of Pf = XfX

T
f , i.e. Xf . One of the variant (ETKF, [Hunt et al.,

2007]) operates the linear algebra in the space of the perturbations:

xa = xf +Xfw
a.

The analysis in the perturbation space is given by

wa =
(
Im +YT

f R
−1Yf

)−1
YT

f R
−1
(
y−Hxf

)
where Yf = Hxf. This updates the mean state via xa = xf +Xfw

a. The perturbations
around it are updated via

Xa = Xf

(
Im−YT

f (YfY
T
f +R)−1Yf

) 1
2
U, where U ∈ O(N) and U1 = 1.
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Main techniques The ensemble Kalman filter

The downside of the EnKF: rank-deficiency

IThere is a heavy price to pay for replacing the Pf n×n covariance matrix of the KF
with the Xf m×n anomaly matrix: spurious correlations for distant state components.
If P = XfX

T
f and B is the true error covariance matrix of a Gaussian process:

Cov
(
[P]ii , [P]jj

)
=

2

N−1
[B]2ij , Cov

(
[P]ij , [P]ij

)
=

1

N−1

(
[B]2ij + [B]ii [B]jj

)
.

IBut, for geophysical systems, we know that most long-range correlations are
dampened exponentially. Consequently, the covariances are misestimated (too low
variances, too high long-range covariances) and leads to divergence of the EnKF.
−→ Practically, this is solved using two fixes: inflation and localisation.

I Inflation consists in inflating the covariances by a scalar in the hope to compensate
for the underestimation of the error statistics [Pham et al., 1998, Anderson et al., 1999]:

x(i)←− x(i) + λ

(
x(i)−x

)
.

Can be avoided in a perfect-model context: finite-size EnKF (EnKF-N) [Bocquet et al.,

2011-2018].
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Main techniques The ensemble Kalman filter

Localisation

ITwo flavors of localisation: domain localisation and covariance localisation.

IDomain localisation: divide and conquer.
The DA analysis is performed in parallel in local
domains. The outcomes of these analyses are
later sewed together. This is applicable only if
the long-range error correlations are negligible.

x

•

•

•

•

•

•

•

•

•

•

Local update

Observation

ICovariance localisation: killing off spurious correlation explicitly: Pf = ρ ◦
(
XfX

T
f
)
.
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IThese strategies have successfully been applied to the EnKF [Hamill et al, 2001;

Houtekamer and Mitchell, 2001; Evensen, 2003; Hunt et al., 2007].
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Main techniques The ensemble Kalman filter

Nonlinear chaotic models: the Lorenz-95 low-order model
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I It represents a mid-latitude zonal circle of the global atmosphere.
ISet of n = 40 ordinary differential equations [Lorenz and Emmanuel 1998]:

dxi
dt

= (xi+1−xi−2)xi−1−xi +F , (1)

where F = 8, and the boundary is cyclic.
IConservative system except for a forcing term F and a dissipation term −xi .
IChaotic dynamics, 13 positive and 1 neutral Lyapunov exponents, a doubling time of
about 0.42 time units.
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Main techniques The ensemble Kalman filter

Illustration with the Lorenz-95 model
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IPerformance of the EnKF in the absence/presence of inflation/localisation.
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Main techniques The ensemble Kalman filter

What about smoothing?

IThere are smoothing variants of the
Kalman filter [Anderson & Moore, 1979], the
Kalman smoother used in the geosciences
[Cohn et al., 1994]

IAnd they have been adapted to the EnKF
and variants [Evensen & van Leeuwen, 2000],

[Evensen, 2009], [Cosme et al., 2012], [Bocquet &

Sakov, 2014], etc.
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EnKF, EnKS filtering

EnKS smoothing

ISometimes called asynchronous data assimilation [Sakov et al., 2010; Sakov & Bocquet, 2018].

IWith the notable exception of the IEnKS, these smoothers relies on Gaussian
assumptions within the DAW.

I 4D-Var is a more natural method to handle nonlinearity within the DAW.
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Main techniques 4D-Var

4D-Var

IStrongly constrained 4D-Var, i.e. assuming the model is perfect

J(x0) =
1

2
‖x0−xb0‖2

B−1 +
1

2

K

∑
k=1

‖yk −Hk(xk)‖2
R−1
k

under the constraints that xk+1 = Mk+1:k(xk) for k = 0, . . . ,K −1.

IFits a model trajectory through the 4D data
points.

I In high-dimensional spaces, requires ∇x0J for
an efficient minimisation. But ∇x0J depends
on the adjoint of Mk+1:k and Hk . This can
be a very difficult technical task if the model
is a huge piece of code for a nonlinear high-
dimensional model.
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IWeakly constrained 4D-Var, i.e. assuming the model is imperfect

J(xK :0) =
1

2
‖x0−xb0‖2

B−1 +
1

2

K

∑
k=0

‖yk −Hk(xk)‖2
R−1
k

+
1

2

K

∑
k=1

‖xk −Mk:k−1(xk−1)‖2
Q−1

k
.
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Advanced techniques
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Advanced techniques Ensemble variational methods

Hybridising ensemble and variational methods

IHybrid: Use flow-dependent statistics from
an EnKF into 3D-Var [Hamil & Snyder 2000;

Wang et al. 2007].

I 4D-LETKF [Hunt et al., 2004; Fertig et al., 2007]

IEDA: ensemble of 4D-Var (ECMWF, Météo-
France) [Raynaud et al., 2009; Bonavita et al., 2012;

Berre et al., 2015; Jardak & Talagrand 2018]

I 4DEnVar: Adjoint-less 4D-Var [Liu et al., 2008; Buehner et al. 2010; Zhang and Zhang, 2012;

Fairbairn et al. 2014, Desroziers et al. 2014], but ensemble update and nonlinearity still not
completely addressed.

I IEnKS: has it all [Sakov et al. 2012, Bocquet & Sakov 2012-2016].

IAs ensemble methods, they all require localisation, which is more difficult to
implement in a 4D context [Bocquet, 2016] except if the adjoint is available.
−→ For a review on EnVar methods, see Chapter 7 of the new book [Asch et al., 2016].
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Advanced techniques Ensemble variational methods

The iterative ensemble Kalman smoother (IEnKS)

IReduced scheme in ensemble space, x0 = x0 +X0w, where X0 is the ensemble
anomaly matrix:

J̃(w) = J(x0 +X0w) .

IAnalysis IEnKS cost function in ensemble space:

J̃(w) =
1

2

L

∑
k=1

‖yk −Hk ◦Mk:0 (x0 +X0w)‖2
βkR

−1
k

+
1

2
(N−1)‖w‖2 .

{β0,β1, . . . ,βL} weight the observations impact within the window.

IAs a variational reduced method, one can use Gauss-Newton [Sakov et al., 2012],
Levenberg-Marquardt [Bocquet & Sakov, 2012], quasi-Newton, trust region, etc.,
minimisation schemes.

IPerturbation update: same as the ETKF

E?
0 = x?01

T +
√
N−1X0

[
∇

2
wJ̃
]−1/2

?
U where U ∈ O(N) and U1 = 1 .

−→ Cécile Defforge’s talk.
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Advanced techniques Ensemble variational methods

Chaining 4D analyses in time

IThe IEnKS opens up new perspectives on the chaining of DA cycles which was little
relevant for either the EnKF or 4D-Var.

I L: length of the data assimilation window,

IS : shift of the data assimilation window in between two updates.

tL−3 tL−2

yL−3 yL−2

tL−1 tL

yL−1 yL

tL+1 tL+2

yL+1 yL+2

tL−2

tL

tL+2

S∆t

S∆t

L∆t

Variational analysis in ens. space → Posterior ens. generation → Ens. forecast
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Advanced techniques Ensemble variational methods

Performance comparison with Lorenz-95
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IComparing 4D-Var, the EnKF, the EnKS and the IEnKS.

M. Bocquet Journée du groupe SAMA de l’IPSL, École Normale Supérieure, Paris, France, 13 March 2018 24 / 37



Advanced techniques Particle filters

Taking the bull by the horns: the particle filter

IThe particle filter is the Monte-Carlo solution of the Bayes’ equation. This is a
sequential Monte Carlo method.

IThe most simple algorithm of Monte Carlo type that solves the Bayesian filtering
equations is called the bootstrap particle filter [Gordon et al. 1993] .

Sampling: Particles {x1,x2, . . . ,xM}.
Pdf at time tk : pk(x)' ∑

M
i=1 ωk

i δ (x−xik).

Forecast: Particles propagated by

pk+1(x)'
M

∑
i=1

ω
i
kδ (x−xik+1)

with xik+1 = Mk+1(xk).

Analysis: Weights updated according to

ω
a,i
k+1 ∝ ω

f,i
k+1p(yk+1|xik+1) .

prior

likelihood

posterior

IAnalysis is carried out with only a few multiplications. No matrix inversion!
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Advanced techniques Particle filters

Taking the bull by the horns: the particle filter

IThese normalised statistical weights have a potentially large amplitude of fluctuation.
One particle (one trajectory of the model) will stand out among the others. Its weight
will largely dominate the others (ωi . 1). Then the particle filter becomes very
inefficient as an estimating tool since it has lost its variability. This phenomenon is
called degeneracy of the particle filter [Kong et al. 1994].

Resampling One way to mitigate this phenomenon is to resample the particles by
redrawing a sample with uniform weights from the degenerate distribution. After
resampling, all particles have the same weight: ω i

k = 1/M.

IHandles very well, very nonlinear low-dimensional systems. But, without modification,
very inefficient for high-dimensional models. Avoiding degeneracy requires a great
number of particles that scales exponentially with the size of the system. This is a
manifestation of the curse of dimensionality.
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Advanced techniques Particle filters

Application of the particle filter in the geosciences

IThe applicability of particle filters to high-dimensional models has been investigated
in the geosciences [van Leeuwen, 2009; Bocquet, 2010]. The impact of the curse of
dimensionality has been quantitatively studied in [Snyder et al., 2008]. It was known [Mackay

et al., 2003] that using an importance proposal to guide the particles towards regions of
high probability will not change this trend, albeit with a reduced exponential scaling,
which was confirmed by [Snyder et al., 2015]: optimal importance sampling particle filter
[Doucet et al., 2000; Bocquet, 2010; Snyder; 2011].

IParticle smoother over a data assimilation window, alternative and more efficient
particle filters can be designed, such as the implicit particle filter [Morzfeld et al., 2012].

IParticle filters can nevertheless be useful for high-dimensional models if the significant
degrees of nonlinearity are confined to a small subspace of the state space, e.g.
Lagrangian data assimilation [Slivinski et al., 2015] .

I It is possible possible to design nonlinear filters for high-dimensional models such as
the equal-weight particle filter [van Leeuwen & Ades, 2010-2017].

I Localisation can be (should be?) used in conjunction with the particle filter [Reich et al.

2013; Potterjoy, 2016; Penny & Miyoshi, 2016; Farchi & Bocquet, 2018].
−→ Alban Farchi’s talk.

I It has been applied in hydrology, nivology, climate, etc [Goosse, Dubinkina et al.].
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Uncertainty quantification of the best estimate

Case study: Chernobyl and Fukushima accidents

Figure XI. Surface ground deposition of caesium-137 released in Europe after the Chernobyl accident [D13].

I 30 deaths in the first days of the accident
I 200 000 evacuees
I 30 km exclusion zone
IMid and long term sanitary impact: thyroid cancer (thousands of cases).

M. Bocquet Journée du groupe SAMA de l’IPSL, École Normale Supérieure, Paris, France, 13 March 2018 29 / 37



Uncertainty quantification of the best estimate

Case study: Chernobyl and Fukushima accidents

Caesium-137 deposition [IRSN database] Air quality monitoring network
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Uncertainty quantification of the best estimate

Case study: Chernobyl and Fukushima accidents

turbulent

diffusion

wet deposition

dry deposition

radioactive decay

and physicochemical

transformations

advection

emissions

IModelled by PDEs of the transport processes and physical and chemical
parametrisations.
ISource term usually unknown.
IParameters of the physical parametrisations often poorly know (effective turbulent
diffusion, scavenging and dry deposition parameters).
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Uncertainty quantification of the best estimate

Case study: Cost function

ISource-receptor relationship: H. Linear model.

IProblem usually solved using 4D-Var [Bocquet, 2012] or methods equivalent to the
representer technique. Here, study focused on UQ of the best estimate [Liu et al., 2017].

I Log-normal errors for the prior and for the observations. Non-Gaussian statistics.

ICost function from Bayes’ rule:

L (z;θ) =− lnp(z|y,θ) =− lnp(y|z,θ)− lnp(z|θ) + lnp(y|θ)

=
1

2
‖lny− lnHxez‖2

R−1 +
1

2
‖z‖2

B−1 +
1

2
ln |R|+ 1

2
ln |B|+ ξ .

ITwo strategies to quantify the uncertainty of the best estimate:

Bayesian hierarchy (HB):

p(x,θ |y) =
p(y|x,θ)p(x|θ)p(θ)

p(y)
, p(x|y) =

∫
dθ p(x,θ |y). (2)

Empirical Bayes (EB):
p(x|y)≈ p(x|y,θ?). (3)

θ
? here estimated by the Expectation-Maximisation (EM) algorithm.
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Uncertainty quantification of the best estimate

Case study: Inversions (EB)

IUniform hyperparameters: R = r?I, B = b?I, where r? and b? are obtained from EM.
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IChernobyl and Fukushima-Daiichi source terms with Gaussian and lognormal
assumptions on the observation errors. Comparison with the Unscear reference source
term.
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Uncertainty quantification of the best estimate

Case study: UQ of the retrieved total radioactivity (EB)

IProbability density function of the total released activity for Chernobyl and
Fukushima-Daiichi.
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IEB: optimal hyperparameters are first determined. Followed by nonlinear sampling of
the total activity using three methods: with a Laplace proposal, a random-then-optimise
sampling, an unbiased random-then-optimise sampling and a basic MCMC.
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Uncertainty quantification of the best estimate

Case study: Inversion (HB)

IFull solution of the Bayesian hierarchy (HB)

IObtained from a Monte Carlo Markov Chain (MCMC)

ITransdimensional analysis (adaptive grid). Here using only 20 grid cells for Chernobyl
and 40 grid cells for Fukushima.
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Uncertainty quantification of the best estimate

Case study: UQ of the retrieved total radioactivity (HB)

IProbability density function of the total released activity for Chernobyl and
Fukushima-Daiichi.
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UQ of the FDNPP total released activity

IFull solution of the Bayesian hierarchy; obtained from an MCMC.

ITransdimensional analysis (adaptive grid). Here using only 20 grid cells for Chernobyl
and 40 grid cells for Fukushima.
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Uncertainty quantification of the best estimate

Final word

Thank you for your attention!

IPart I: A gentle introduction to DA.

IPart II: More advanced topics including EnKF
and EnVar.

IPart III: Applications of DA including emerging
ones such as: glaciology, biology, geomagnetism,
medicine, imaging and acoustics, economics and
finance, traffic control, etc.
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